Screen-Space Curvature for Production-Quality Rendering and Compositing
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Figure 1: A subdivision surface character (courtesy of Peter Eriksson) is animated and rendered using Modo(©). Three poses are shown
in the middle: our screen-space mean curvature (top: concave regions in red, convex regions in blue) is used to modulate a basic shading
(bottom-left) yielding an exaggerated appearance (bottom-right). Right: another shading modulation based on our offset 7.

1 Introduction

Surface curvature is a measure commonly employed in Computer
Graphics for a vast range of applications: for modeling purposes of
course, but also to drive texture generation, or to produce exagger-
ated or stylized shading results (see Figure 1).

Curvature is a differential property expressed at each surface point.
When working with meshes, it can be efficiently computed per ver-
tex using GPU-based techniques [Griffin et al. 2011]. However,
this approach becomes impractical when dealing with production
quality scenes that involve various representations (e.g., subdivi-
sion surfaces, implicit and procedural geometry, displacement and
bump maps) and/or deformable objects. This severely limits its use
in real-time editing (as in sculpting) or for shading animated scenes.

2 Screen-Space Curvature

Our approach may be applied either in ray-tracing or compositing
contexts. For each sample (ray or pixel), we start by collecting
neighbor samples in screen-space that are closer than a threshold
distance t. We also reject neighbors that are farther than a thresh-
old relative depth d, to avoid collecting samples across occluding
contours. We then recover a normal vector and a 3D position for
each neighbor sample. The resulting local point cloud is fit with an
algebraic sphere where each sample is weighted by a compactly-
supported function parametrized by .

Our fitting is performed using the method of Mellado et al. [2012],
which has the benefit of characterizing the resulting sphere with
geometrically-meaningful parameters. This provides us not only
with a mean curvature estimate x, but also with an offset 7 that
identifies local relief and a smooth reconstructed normal vector 7).
With this approach, ¢ controls the scale of the local reconstruction.
As shown in Figure 2, our approach produces an accurate approxi-
mation of object-space mean curvature, which is due to the local na-
ture of differential properties. There is a notable difference though:
farther objects exhibit less details than closer ones with the screen-
space approach, which provides for automatic simplification and
reduced aliasing artifacts.

An alternative to our screen-space curvature would be to apply 2D
derivative filters on normals [Vergne et al. 2009]. However, this
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approach neglects 3D positions, and raises issues nearby occluding
contours, whereas our fitting remains well-defined.

Figure 2: Comparison between mean curvature estimated in
object- (left) and screen-space (right), shown at 2 different scales.
3D model courtesy of AIM@SHAPE Library.

3 Applications

We have implemented SSC in Modo(©) on top of its ray-tracing en-
gine, and in CUDA for post-processing, as shown in the accompa-
nying video. An example animation is depicted in Figure 1, where
we visualize our mean curvature estimate x with a color code, along
with a simple curvature-based shading result. Our method is ap-
plied at each frame with a negligible performance overhead com-
pared to rendering (for both pixel- and ray-based implementations),
and it exhibits natural temporal coherence.

In future work, we plan to use SSC during sculpting to enhance
small (yet important) surface details, and for non-photorealistic ren-
dering to guide stylization. In both cases, we believe that not only
 but also 7 and ) will prove to be valuable control parameters.
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